

Effects of hypoxia and anoxia on sediment-water nutrient exchange: Insights from long-term analyses in Chesapeake Bay

CBEO Chesapeake Bay Environmental Observatory

I. History of Chesapeake Bay Hypoxia

Hypoxic volume has appeared to increase since 1950
This increase is clear, despite the strong effect of

river flow on hypoxia (Hagy et al. 2004)

II. Hypoxia related to NO₃⁻ load

- Despite reductions in NO₃⁻ loading in recent decades, hypoxia has continued to increase (Hagy et al. 2004)
- What is driving the sustained hypoxia hypotheses?

Jeremy M. Testa and W. Michael Kemp University of Maryland Center for Environmental Science Horn Point Laboratory, Cambridge, Maryland

 III. Hypothesis: Reduced O₂ allows more N and P release from sediments, which fuels increased primary production and hypoxia

IV. Hypothesis Test: Sediment-water fluxes of N and P influenced by O₂

- \bullet NH₄+ and PO₄³⁻ fluxes from sediment substantially elevated under low O₂ in mid-Chesapeake Bay
- Bottom water O₂ in this region has declined (below)

V. Sediment-water NH₄⁺ and PO₄³⁻ release correlates with bottom water nutrient <u>concentrations</u>

 Low O₂-induced increases in sediment-water nutrient flux can elevate water column N and P concentrations

VI. Sediment-water DIN release may have been lower before 1980 than from 1980 to 2000

 Deep water NH₄⁺ increased despite recent, slight N-loading declines since 1980, suggesting that recycling may be elevating water-column NH₄⁺
 (Inset: NH + is a larger fraction of TN under hyperic

(Inset: NH₄⁺ is a larger fraction of TN under hypoxia)

• Hypoxia-induced reduction in benthic invertebrates may be responsible – see *Bosch and Kemp* poster